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FURTHER INVESTIGATIONS 
WITH THE STRONG PROBABLE PRIME TEST 

RONALD JOSEPH BURTHE. JR. 

ABSTRACT. Recently, DamgArd, Landrock and Po)meranice described a proce- 
duie in which a k-bit odd numrber is choseni at random anid subjected to t 
ranidom strong probable prime tests. If t.he chosen number passes all t tests. 
theni the procedure will return that number: otherwise. another- k-bit odd in- 
teger is selected and then tested. The procedure ends when a nuimber that 
passes all t tests is found. Let Pk.t deniote the probability that such a number 
is comiposite. The authors above have shown t.hat Pk.t < 4-t when k > 51 
and t > 1. In this paper we will show that. this is in fact. valid for all k > 2 
and t > 1. 

1. INTRODUCTION 

Let n be an odd number with n- I = 25u, where u is odd. The following notation 
will be used in this article: 

S(n) l{a [1, n -- 1]: a" =_ 1 mod n or a2 -1 mod n for some i = O,1,... 
s -I I 

S(n) = I S(n) 1 
If a e S(n) for some pair a and n, we say that n is a strong probable prime to 

base a. If n is prime, then S(n) = n - 1, and if n is an odd composite number, then 
S(n)/(n - 1) < 1/4 (see Mlonier [4], Rabin [5]). 

Now if for a given n we can find an integer a C [1, n- 1] such that a ? S(n), 
then we know that n is composite. If one picks t a's at random from [1, n - 1] and 
discovers that each is in S(a), one cannot however conclude that n is prime. WVe 
can conclude that if n is an odd composite number, the probability that all the t 
randomly chosen a's are in S(n) is less than or equal to 4'. 

These results suggest a procedure for finding random integers that are likely 
to be prime in the set Alk of odd k-bit integers. Choose a random n in MIk and 
then choose an a, C [1,n - 1] and see if a E S(n)a. If a1 E S(n), then choose an 
a2 c [1, n - 1] and test to see if it is in S(n). This procedure is then repeated until 
either an a, is discovered such that a, f S(n) or until t a,'s are found that are all 
in S(n). In the former case, another n is picked from A11k, and in the latter case, 
the number n will be given as output. This procedure, as described in [1] will be 
referred to here as the random bases procedure. 

Let Pk.t denote the probability that the number which is given as output by the 
random bases procedure is composite. In [2], it is left as an open question to find a 
value k11 sUch that Pk.t < 4-t for all t > 1 and k > k11. From Monier's and Rabin's 
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result one sees that if n is an odd composite integer, then the probability that it 
passes t random strong pseudoprime tests is less than or equal to 4'. However, 
this is not sufficient to show that Pk,t < 4-t as the following discussion shows. For 
a fixed t > 1 choose k sufficiently large such that the density of the primes in Mk 

is much less than 4't. Assume also that for most composite m in Mk that the 
probability that m passes a random bases test is about 1/4. Then, of course, the 
probability of it passing t tests is about 4-t. Suppose that we have an n from Mk 

that passes t tests. Since we are assuming that the primes in Mk are scarce, it 
will be much more likely that n is composite rather than prime. So Pk,t would be 
close to 1. However, it will be shown in this dissertation, that Pk,t < 4-t for k > 2 
and t > 1. The flawed assumption that led us to the conclusion that Pk,t was close 
to 1 is the assumption that the probability of a composite n in Mk passing a test 
was about 1/4. In actuality the probability is usually much smaller and this is 
essentially the conclusion of Proposition 1. 

In the next section we will prove that Pk,t < (1/4)t Pk,l /(1 -Pk,l) for integer 1 
with 1 < 1 < t - 1. Taking 1 = 1 we get that Pk,t ? 41-tpk,l/(l -P ), so to show 
that Pk,t < 4-t for all t > 1, it suffices to show that Pk,1 < 1/5. In [3], it is shown 
that this is true for k > 55. Taking 1 = 2 in the above inequality, we can see that 
to show that Pk,t < 4-t for all t > 1 it will also suffice to show that Pk,1 < 1/4 
and Pk,2 < 1/17. In [3], this is shown to be true for all k with 51 < k < 54. In 
this paper we will improve the results in [3] and show that Pk,t < 4-t for all k 
with k > 2 and t > 1. This will be done by extending some of the ideas in [3] and 
sharpening the upper bounds found there as well. Some improvements are due to 
simple observations of the properties of certain numbers and easily lead to a lower 
upper bound. Other improvements are not quite as obvious and require more work 
while only minimally improving some of the results. The overall net effect is to 
reduce in general the upper bound for Pk,t by a factor of a fourth. We are able to 
prove a theorem that enabled us to verify that Pk,t < 4-t for all k > 25 and t > 1. 
For 2 < k < 24, the result is verified by actually computing Pk,t using an equation 
due to Monier. Thus we can take ko to be 2. 

2. PRELIMINARIES 

We will start by recalling Lemma 1 from [3]. Here, w(n) is the number of distinct 
prime factors of n, Q(n) is the number of prime factors of n counted with multi- 
plicity, X(n) is the Euler phi function, and a(n) = S(n)/o(n). For the remainder 
of the paper, p will always be used to denote a prime. 

Lemma 1. If n > 1 is odd, then 

1 >2w(n)-l rip-1 r d-1 > 2(n)-i p-1 
a (n) PO lin (p - 1, n - 1) -p.in (p - 1, n - 1)' 

The following lemma is a generalization of Lemma 2 in [3] and gives a slightly 
improved result. 

Lemma 2. If t E i, t > s, s E Z+Z,then 

?? 1 c8 
E=+2 < t1 

n LtI+ 
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where 

Cs =(s + 1) - E 2) 6 
n=1 

Proof. Let m tL. So m 7 Z, m > s. Then 

12 1 17r2 

C2 2 L 2 2 Ck n 
n=m+L n= 1 n=t1 nth1 

< - 6 E 2 cm. t 6 ~n=1l 

Letting k E o + with k > s + 1, we have that 

72 k 1 
Ck-1 - Ck =- 6 + k + : n2 6 k n=1n 

6 +k Z2 
dx n2 6 I: n2 

Thus the sequence C, c,+1 .... is decreasing, and in particular cm < c,. Substitut- 
ing into the previous inequality gives the desired result. C 

Lemma 3. If 1, t E Z+ with 1 < I < t - 1, then 

PkEt < 4=DPknD 
t 1-~~Pk,1 

Proof. The event that a number chose,n at random from Mk passes the ith test will 
be denoted by Di, and we define the event Ei by 

E, = Din D2 n ..n Di. 

We will also let C denote the event that a number chosen at random from Mkc is 
composite, and C' will denote the set of composites. Also let a(n) = S(n)/(n - 1), 
and recall that for odd composi'te n we will have U(n) < 1/4. P(A) will be 
used here to denote the probability that event A occurs. Note that P(C n E,)= 
2-(k-2) EnEC'nMk Z(n)'. 

Now for 1 < I < t - 1 we have 

Pk,t = P(C I Et) = P(C nEt) 
.P(Et) 

P(C nEt) P(C nEt-1) P(C n Ei+i) P(C nEl) 
P(CnEt, ) P(CnEt-2) P(CnEl) P(Et) 

Now 

P(C n E,) _ EnEC'nMk (Xn) < EnEC'nMk 4() _ 1 

P(C n E_1) ZnEC'nMk o(n)1 
- 

EnEC'nMk i(n)i- 4 
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Letting Ac denote the complement of event A, we see that cc is the event that 
a number is prime. Since a prime in Mk will always pass each test we see that 
P(Cc n Et) = P(CC) = P(Cc n El). Thus we see that 

Pk,t <(1) P (El) P(Et) 41 P(Et) 

Also 

P(E1) P(E1) P(E1) _ P(E1) 1 1 

P(Et) -P(Cc n Et) P(CC) P(Cc n E) P(cc I El) 1- Pk,l 

which completes the proof of the lemma. D 

3. ESTIMATES 

Now as in [3], Cm will denote the set of odd composite integers n with a(n) > 
2-m. However, we will allow m to assume nonintegral values. Since a(n) < 1/4 for 
odd composite n =A 9 (see [4] or [5]) and since a(9) = 1/3, we will have Cm = 0 for 
O < m < ln3/ln2 and Cm = {9} for ln3/ln2 < m < 2. 

We will now generalize Theorem 1 from [3] for the case where m is not necessarily 
an integer. 

Theorem 1. Assume k C Z+i k > 2, m C R+ s e 2+ such that 

S < (2(k-1)/j 1)23m-2 for j = 2, 3, ..., Fm 

Then 

Cm n Mk I [ml2 2m+ljl -I 
K 2csZ k- 

| Mk~ |j=2 2j-1 

where c, is defined as in Lemma 2. 

Proof. From Lemma 1, we have 1/a(n) > 20(Wn)- for all odd n. So if n c Cm, we 
have 2m > 1/a(n) > 2'(n)1- and thus mi+ I > Q(n). Since Q(n) E Z+, this implies 
that Q(n) < Fm]. Now letting N(m, k, j) = {n E Cm n Mk I Q(n) = j}, we see that 

[ml 

ICm n MkI E I N(m, k,j). 
j=2 

Let n C N(m, k, j), 2 < j < Fm], and let p be the largest prime factor of n. Now 
2k1 < n < pJ implies that p > 2(k-1)/j Let d(p,n) (p - l)/(p - ,n -1). 
Lemma 1 implies that 2m > o(n)-1 > 20(n)-1d(p,n) 2j-1d(p,n), so we must 
have d(p, n) < 2m l- ) 

Given p, d such that p > 2(k-1)/j, d I p-1, and d < 2m+l-j, we want to get 
an upper bound for the number of n C N(m, k, j) with largest prime factor p and 
d(p, n) = d; it will suffice to consider the set Sk,d,p {n C Mk: p I n, d - d(p, n), 
n composite}. The set Sk,d,p is contained in the set Rk,d,p := {n E 2: n 0 mod p, 
n -1 mod (p - 1)/d, p < n < 2k} which has, via the Chinese Remainder Theorem, 
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less than 2kd/(p(p - 1)) elements. If Sk,d,p # 0, then there exists an n E Sk,d,p with 
(n - l, p - 1) = (p - 1)/d, and thus (p - 1)/d must be even since n and p are odd. 
Thus we need only consider those d and p such that (p - 1)/d is even. Letting 7 
denote a sum over p with 2 j < p < 2k, d p - 1 and (p - I)/d even, we get that 

N(m, k, j) I < > >3 Sk,d,p I < 3 >3 |Rk,d,p 
d<2m+l-j d<2m+l-i 

< 2k ? d 
>3E >3p(p~ 

d<2m+li-j 

Now 

d d 1 1 
p(p -) 

2ud>23k-)/- 
(2ud + 1)2ud 

- 4d 3 
1 2- 2ud>2(k1)/J ~~~~U> 2d- 

1 2c8d cs 1 
4d (2(k-l)/j - 1) 2 (2(k-l)/j - 1) 

with the last inequality coming from Lemma 2. Note: to use Lemma 2, we must 
have that (2(k-1)/j - 1)/(2d) > s, but this follows from the hypothesis that s < 
(2 (k-)j- 1)2J-m-2, since d < 2m+1-j. Thus, 

N(m, k,j) k kCs I7 k Cs [2m+1-3] -1 I N(m k j) 2< 2 CS 2(k-l)/j - 1 2 2(k-1)/j - 1 
d<2m+ 1-j 

Therefore, 

Fml kCFml 2rm?1-jl I 
I cm nMk =>E N(m,k,j)j <2k > 

j=2 j=2 

Now since k > 2, we have I Mk 2k2* So by dividing each side of the inequal- 
ity by 2k-2 we get the desired result and our proof of Theorem 1 is complete. D 

Now let E' denote a sum over composite integers. As in [3], recalling that p 
denotes a prime, we have 

Pkt 
E i(n) 

t-l /' 
Z(n)t 

= ( j: d(n)t + 1: 1) -' j: (n)t 
nEMk nEMk nEMk PEMk nEMk 

(>3' /C(n)t + l(2k) - w(2k-1)) 1> a(n)t 

nEMk nrEMk 

Now if we have an upper bound N1 for Z'nEMk d(n)t and a lower bound P1 for 
7r(2k) - 7r(2k-1), then 

N1 
(1 ) Pk, t < 

Let (q) denote a sum with increments of length l/q where q E Z+. 



378 R. J. BURTHE, JR. 

Proposition 1. Let k, M, t, s, q E Z+ with k > 5, M > 3 and s < 

(2(k-1)/j - 1)2j-M-2 for j = 2, 3, ..., M. Then 

M FM] 

_( )t < 
2-Mt+k-2 + 2k-1c (2t/q - 1) 2 k1 1 

nEMk m=2+1 j=2 2 i -1 

Proof. Since k > 5, we have 9 ? Mk. So for all m with 0 < m < 2, we have 
CmnMk 0. Thus 

00 00 

m-2-F-1 riE qn)t 
= 

(Cm)TT(n)t 
< a(n)t 

nEMk m=2+ q nEMkn(Cm\Cm 1) m=-2+1 nEMkn(C\C 1) 

00 

< ?.2 ( q )t I mk n (cm \ Cm-, )I 
m=2+ q 

00 M 

< 2M |Mkmn(Cm\Ci-)j|+ E 2( knC\m1 
m=M+2+1q=2+q 

M 

= 2 Mt| Mk \ CM | +Z, 2 (\m-) | Mkq n(Cm \ nCm\)I 

m2q 

Let Tm = Cm n Mk 1, and let Urn be an upper bound for Tm. Rewriting the 
above inequality, we get 

M 

/? a(n)t< 2t(IMk | - TM) +( 
) 2 (mq )t(Tm-Tm-1) 

M-1.,q M ) 
2 (t2k CM)I +J: (2-( q)_ 2-n(m\mt _ +2(M1)jT 2- 

flEMk~ 

q~~~~~~~~ 

m=221q 

M~~~ 

- 
2nMt(<2k-2tIM - TM) +z q ((q(-)t2 -(m-t)T + ()T -2T 

< 2-Mt+k-2 + ~(g) (2-(m-)t -2-mt)T q 

q~~~~~~~~~~~~~~~~~~~ 

nEMk m==+ (+ 2 ) 

q 

Now ( - 2-2t = (2 2 - ml)2-tt, and since we can take 

Urnm= 2klCq Z F2m+1-i1 -1 

from1 Ter 1 t -1 

from Theorem 1, this give 
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S (n)t <2-Mt+k-2 + 2k1lcS(2q -1) (q) 2-mt [m [2m-13- 
nEMk m=2+r j=2 2 -1 

This concludes our proof of Proposition 1. 
E 

From Proposition 2 in [3], we know that for k > 21 we have 

2k 
-rr(2k) - r(2k-1) >(.71867)- 

Thus, we may take N1 and P1 in (1) as 
M Fml 

N1 2-Mt? -2 k? C ( - 1) (q)k1 
N, = 2 Mt+k 2k 1c(22 q 5: 2-mt Z(v2m+l-jl - 1)/(2K - 1) 

m=2+ 1 j=2 
q 

and 
)2k 

Pi = (.71867) k 

for k > 21, where M > 3 and s < (2(k-1)/j - 1)2j-M-2 for 2 < j < M. 
Now in our computations we need s to be a positive integer at most 

(2(k-)/ )2-M-2 for each j with 2 < j < M. So we choose M such that 
the greatest integer less than or equal to (2(k-1)/j - 1)2j-M-2 is positive. So es- 
sentially we want to have g(j) := (k - I)/j +-j - M - 2 > 1. Taking M and k as 
fixed, we see that g has a minimum of-M-2 + 2 - at j = k-. So for 
our purposes, it is sufficient to choose M such that 3 < M < 2 k - 1 - 3. 
This guarantees that we can find a largest positive integer -say s1 with si < 
(2(k-1)/j - 1)2j-M-2 for each j with 2 < j < M. Choosing s = s, gives us the best 
possible constant for cs (but computing c,1 for large s, uses more running time while 
yielding only negligible improvements). So for each M with 3 < M < 2 k - -3, 
we choose s to be the minimum of s, and 30 and compute our upper bound using 
that s and taking q = 4. Taking the minimum of all the upper bounds we were 
able to show that Pk,1 < 1/4 and Pk,2 < 1/17 for 25 < k < 50. Thus we were 
able to show that Pk,t < 4-7 for all k with 25 < k < 50. In our approximations 
for the upper bound of Pk,t, the s-value we chose was only dependent upon M but 
if we brought the c inside the summation over m in the above expression for N1, 
we could have in fact chosen our s so that it would be dependent upon m instead, 
and it would only have to satisfy the inequality s < (2(k-1)/j - 1)2j-m-2. This 
was attempted for some values of k but it did not produce any significant improve- 
ments. Subsequently, we continued to use the value for s determined by M. The 
main results of our computations are shown in Table I and Table II. 

TABLE I. Uk: upper bound for Pk, 1 for 25 < k < 50 

k Uk k Uk k Uk k Uk 

25 0.248692 32 0.173705 39 0.119921 46 0.080952 
26 0.237095 33 0.165640 40 0.113131 47 0.076863 
27 0.225027 34 0.157518 41 0.107492 48 0.072736 
28 0.215733 35 0.150928 42 0.102743 49 0.069210 
29 0.209292 36 0.144473 43 0.099016 50 0.066400 
30 0.196233 37 0.135932 44 0.091629 
31 0.185387 38 0.126492 45 0.086431 
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TABLE II. Uk,2 upper bound for Pk,2 for 25 < k < 50 

k Uk,2 k Uk,2 k Uk,2 k Uk,2 

25 .021590 32 .008395 39 .003472 46 .001476 
26 .018884 33 .007394 40 .003027 47 .001315 
27 .016233 34 .006436 41 .002659 48 .001160 
28 .014140 35 .005650 42 .002349 49 .001029 
29 .012564 36 .004996 43 .002099 50 .000922 
30 .011127 37 .004471 44 .001869 
31 .009791 38 .003928 45 .001672 

4. EXACT VALUES 

The above upper bound method fails to give us the desired result for k < 24 and 
in this section the method used to handle these cases will be discussed. Let v(n) 
denote the largest integer such that 2(n) p - 1 for each prime p I n, and let u 
denote the largest odd factor of n - 1. If one recalls that (r(n) = S(n)/(n - 1), it 
is computationally possible to compute Pk,l exactly for k < 24, using (as described 
in [4]) Monier's result 

( 2w (n) v(n) _ I 
S(n)D=z(1+22 l) )l(p -1, u) 

pln 

and our previous formula (recalling that j is a sum over composite integers) 

Pk,l ( a(n a 
n eMk neMk 

To compute S(n), all of the prime factors of n must be determined so computation- 

ally we can only use this formula for fairly small values of k. The C program we 

used for our computations first found all the primes less than 4096 (the square root 

of 224) and put these primes into a file. Then for each odd n with 2k-1 < n < 2k, 
we were able to determine w(n) and v(n), using this file and trial division. These 

computations were done on a SPARC I computer and took only several hours to 

run. 

Table III shows the values of Pk,1 (approximated to six place accuracy) obtained 

by using the above equations in our program for 2 < k < 24. Since all these values 

are less than 1/5 we can conclude that Pk,t < 4-t for all k with 2 < k < 24 and 
t > 1. Combining these results with the results obtained using the upper bounds, 
we have shown that Pk,t < 4-t for all k > 2 and t > 1. 

TABLE III. Computed values of Pk,1 for 2 < k < 24 

k Pk,l k Pk,l k Pk,l k Pk,1 

2 0.000000 8 0.038004 14 0.005934 20 0.000609 
3 0.000000 9 0.030837 15 0.003944 21 0.000402 
4 0.164179 10 0.020525 16 0.002626 22 0.000276 
5 0.064299 11 0.017394 17 0.001929 23 0.000188 
6 0.065348 12 0.010710 18 0.001258 24 0.000126 
7 0.056655 13 0.007949 19 0.000905 
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5. FURTHER NUMERICAL RESULTS 

Using the upper bound Pk,t < N1j(N1 + P1) where N1 and P1 are defined as in 
?3, we can improve most of the values found in Table 2 of [3]. For each possible k 
and t in the table, we computed a lower bound for - lgpk,t in the following way. For 
each M within a well chosen range, we chose our s as before to be the minimum of 
the largest allowable value for s and 30 to obtain a lower bound for - lgpk,t and we 
then took the maximum of all these lower bounds. The entries in Table IV reflect 
the maximum of the computed values and the entries from Table 2 of [3] where the 
italicized entries are those entries from [3] which were not improved upon by our 
computations. We believe that it is possible to improve this table even more by 
using the combined method discussed in [3] and the results obtained in this paper, 
but we did not attempt to do so. 

TABLE IV. Lower bounds for - lgpk,t 

k\t 1 2 3 4 5 6 7 8 9 10 
100 7 17 23 28 32 35 38 41 44 46 
150 11 22 30 36 41 46 50 53 56 60 
200 14 27 36 43 49 54 59 63 67 71 
250 16 32 42 49 56 62 68 72 77 81 
300 19 36 46 55 63 69 75 81 86 90 
350 28 39 51 60 69 76 82 88 94 99 
400 37 46 55 65 74 82 89 95 101 107 
450 46 54 62 70 79 88 95 102 108 114 
500 56 63 70 78 85 93 101 108 115 121 
550 65 72 79 86 93 100 107 114 121 128 
600 75 82 88 95 102 108 115 121 128 135 
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